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The developing nervous system undergoes remarka-
ble remodelling to achieve the highly precise wiring 
diagram characteristic of mature neural circuits. This 
precision is achieved through pruning — an extensive 
process in which a large subset of axons, dendrites and 
synapses that initially form in abundance are eliminated 
over the course of development throughout the nervous 
system. While it is important to recognize the vast liter-
ature on large-scale pruning of axons and dendrites in 
the vertebrate and invertebrate peripheral nervous sys-
tem and central nervous system (CNS)1–4, in this Review 
we focus on developmental pruning of synapses in the 
mammalian CNS. We define synaptic pruning as a devel-
opmental process in which elements that comprise a 
bona fide structural synapse (presynaptic terminals and 
postsynaptic membranes) are eliminated, which may 
also include the removal of small segments of axonal 
and dendritic branches. Concomitant with elimination, 
remaining synapses are maintained, strengthened and 
elaborated. We review literature demonstrating roles 
for neural activity in developmental synaptic pruning 
and literature that has guided a new understanding 
of molecular mechanisms that may link changes in 
activity with the physical removal of some synapses 
and maintenance and strengthening of others. These 
mechanisms include emerging new roles for immune 

signalling and cell death molecules in synapse removal, 
which can be neuron intrinsic but can also include 
neuron-extrinsic, glial-driven mechanisms. Finally, we 
highlight how insights gained from the study of synaptic 
pruning in the healthy, developing nervous system have 
informed mechanisms of neurodevelopmental disor-
ders, with a focus on autism spectrum disorder (ASD) 
and schizophrenia.

Background: activity-dependent pruning
Neuronal activity plays a central role in developmental 
synaptic pruning, which involves weakening and elim-
ination of some synaptic connections and strength-
ening and maintenance of others5–7. In mammals, 
activity-dependent pruning occurs throughout the 
CNS at different periods in development, depending 
on the brain region and neuron subtype. In this section, 
we focus on model circuits that have been extensively 
studied in the context of activity-dependent synaptic 
pruning, given the stereotyped nature of the pruning 
and the experimental tractability of each circuit (Fig.1). 
Through modulating either spontaneous neural activity or 
experience-driven neural activity, studies of these circuits 
have taught us guiding principles by which neuronal 
activity drives synaptic pruning during development. 
They have also led to the identification of molecules that 
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link changes in activity with the physical elimination of 
synapses, which we outline in the next section as well as 
in following sections.

Spontaneous neural activity-driven synaptic pruning. 
Among the first studies to identify roles for neural 
activity in synaptic pruning in the CNS were those in 
the retinogeniculate system examining synapses from 
retinal ganglion cells (RGCs) onto relay neurons within 
the lateral geniculate nucleus (LGN) of the thalamus 
(Fig. 1a). Initially, right eye and left eye RGC inputs form 
exuberant synapses onto relay neurons within overlap-
ping territories of the LGN. Before eye opening (before 
postnatal day 10 (P10) in mice), waves of spontaneous 

activity in the retina drive the segregation of RGC 
inputs into eye-specific territories in the LGN (that is, 
eye-specific segregation). This process involves elimina-
tion of a subset of presynaptic inputs and strengthening 
and maintenance of others8–20. Appropriate refinement 
of eye-specific territories requires that spontaneous 
activity among neurons of the same retina is synchro-
nized, while activity among the two retinas must be 
asynchronous17. If spontaneous activity is blocked in 
both eyes during eye-specific segregation or synchro-
nized through optogenetic stimulation, RGC inputs fail 
to prune into eye-specific territories11,19,21. If spontaneous 
activity is blocked or increased in only one eye, synap-
tic territory from the less active RGCs is reduced and 
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synaptic territory from the active RGCs is expanded11,20. 
If asynchronous activity between the two eyes is driven 
by optogenetics earlier in development, eye-specific seg-
regation is achieved earlier21. Thus, this circuit supports 
a model in which spontaneous neuronal activity drives a  
Hebbian competition between synapses. The relative 
timing of activity between the two eyes and within a 
given eye is critical to dictate the elimination of some 
synapses and strengthening and maintenance of others.

Spontaneous neural activity also regulates pruning 
in the developing cerebellum (Fig. 1b). Initially, multiple 
climbing fibres from the inferior olivary nucleus synapse 
onto Purkinje cell somas. By approximately P11 in mice, 
many somatic climbing fibre synapses are eliminated and 
a ‘winning’ climbing fibre translocates and synapses onto 
the Purkinje cell dendrites22,23. In a second stage (approx-
imately P12–P17), any remaining somatic climbing fibre 
synapses are pruned away. Similarly to the retinogenic-
ulate system, Hebbian-type plasticity is required for 
climbing fibre pruning. This plasticity includes strength-
ening of a single climbing fibre input, while other inputs 
weaken and are eliminated24. This selective strengthen-
ing requires postsynaptic activity as the climbing fibre 
input that is most synchronous with the Purkinje neu-
ron burst output becomes the ‘winner’25–29. Increased 
GABAergic innervation onto the Purkinje cell soma 
from cerebellar basket cells further drives the relative 
weakening of the ‘losing’ climbing fibre inputs during the 
first stage of pruning30. During the later stage of pruning, 
signalling downstream of metabotropic glutamatergic 
receptors (mGluR1) in Purkinje cell dendrites drives 
the pruning of any remaining somatic climbing fibre 
synapses31–36. This mGluR1 signalling stimulates expres-
sion of the membrane-tethered semaphorin SEMA7A37,38 
and release of brain-derived neurotropic factor (BDNF)39 
from Purkinje neurons onto remaining somatic climbing 
fibre synapses by binding to plexin C1/integrin β1and 
TrkB, respectively, to facilitate their removal.

In addition to signals that lead to the elimination of 
‘losing’ climbing fibres, other molecules stabilize the 
‘winning’ climbing fibres. For example, another sema-
phorin, SEMA3A, is secreted from Purkinje neurons to 
promote the stabilization and maturation of ‘winning’ 

climbing fibres throughout all stages of pruning37. 
Acting in parallel to SEMA3A, progranulin derived 
from Purkinje cells is taken up by climbing fibres 
through binding to sortilin 1 (SORT1) to promote the 
stabilization and strengthening of these climbing fibres40. 
Finally, it is important to consider the influence of glia. 
Wrapping of climbing fibre synapses by specialized cer-
ebellar astrocytes called ‘Bergmann glia’ is required to 
strengthen the ‘winning’ synapses and prevent exuber-
ant climbing fibre innervation along Purkinje cell den-
drites during later pruning stages41. Microglia promote 
weakening of a subset of climbing fibre synapses in other 
ways30,42 (discussed later). Together, the retinogenicu-
late and cerebellar climbing fibre circuits demonstrate 
how differential activity in neurons drives a competi-
tive pruning process. Cerebellar climbing fibre pruning 
has provided further insight into activity-dependent 
molecules that drive this competitive process.

Experience-driven changes in neural activity and syn-
aptic pruning. The effects of neural activity on synaptic 
pruning have also been studied by the modulation of 
sensory experience. First demonstrated by Hubel and 
Weisel43 in the cat visual cortex, monocular deprivation 
results in the weakening of synapses correspond-
ing to the sutured eye and strengthening of synapses 
corresponding to the open eye, a process termed 
‘ocular dominance plasticity’. Studies in rodents have since 
revealed a decrease in thalamocortical arborization and 
a reduction in postsynaptic dendritic spines correspond-
ing to the deprived eye, while thalamocortical projections 
from the open eye increase their arborization and synap-
tic territory44–52 (Fig. 1c). Linking changes in activity with 
structural plasticity is evidence that long-term depression 
(LTD) also occurs during monocular deprivation53,54, 
which has been linked to spine shrinkage and pruning 
in the hippocampus55–57. In addition, GABAergic inner-
vation of cortical pyramidal neurons within the visual 
cortex by parvalbumin-positive interneurons is required 
to detect spatio-temporal differences in thalamocorti-
cal inputs during monocular deprivation and is neces-
sary for subsequent spine pruning58,59. Downstream of 
GABAergic transmission during monocular deprivation, 
the proteolytic enzyme tissue-type plasminogen activa-
tor is activated and the active protease is proposed to 
remodel the extracellular matrix to accommodate spine 
remodelling59. Similarly to in the visual cortex, visual 
experience also affects a later stage of synapse remod-
elling (P20–P30) in the retinogeniculate system when 
RGC synapses in the LGN consolidate and strengthen, a 
process that requires visual experience60. While some of 
this remodelling involves clustering of presynaptic ter-
minals along an RGC arbor61, it also involves pruning of 
dendritic spines in the LGN62.

Experience-dependent synaptic pruning has also 
been well documented in the somatosensory system. 
For example, whisker deprivation leads to dampened 
neural activity in the barrel cortex and the elimination of 
thalamocortical presynaptic inputs onto layer IV cortical 
neurons in developing rodents63–65, which also occurs in 
adult rodents, albeit less robustly63–65. However, increased 
spine density within the barrel cortex following whisker 

Fig. 1 | Model circuits for studying activity-dependent synaptic pruning. The classic 
models for studying synaptic pruning in the mammalian central nervous system include 
developmental remodelling within the retinogeniculate system, cerebellum and cortex. 
a | In the retinogeniculate system, retinal ganglion cell (RGC) axonal arbors initially  
form synapses with relay neurons in overlapping territories within the lateral geniculate 
nucleus (LGN). Before eye opening (from birth to postnatal day 10 (P10)), spontaneous 
neuronal activity in the retina results in pruning (dashed lines) of RGC synapses (red and 
blue lines) and eye-specific segregation so that each eye occupies a discrete territory 
before eye opening8–19. Relay neuron synapses undergo further remodelling after 
eye opening in response to light exposure from P20 to P30, when relay neuron spines 
(green) are pruned60–62. b | In the cerebellum, Purkinje cell somas are initially innervated 
by multiple climbing fibre inputs. In the first stage of pruning, the weaker climbing fibre 
inputs at the soma are pruned, while the strongest somatic input translocates to the 
Purkinje dendrites. In the second stage of pruning, remaining climbing fibre inputs  
to the soma are pruned, while the single climbing fibre input at the Purkinje dendritic 
arbor is maintained22,23. c | In the cortex, changes in sensory experience such as 
monocular deprivation or whisker manipulation result in pruning (dashed lines) of 
thalamocortical presynaptic terminals (red) and cortical dendritic spines (blue) in 
response to the changes in neuronal activity43–52,59,63–65.
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deprivation, possibly owing to an increase in cortico-
cortical synapses, has been reported66,67. Of note, syn-
aptic pruning also occurs with increased activity in the 
somatosensory cortex. For example, stimulating whisker 
activity through environmental enrichment accelerates 
thalamocortical synapse maturation and pruning68, 
which seems to involve competition between spines 
for synapse-stabilizing cadherin–catenin complexes. 
Experience-dependent pruning also occurs upstream 
of the barrel cortex in this circuit, in the ventral pos-
teromedial nucleus (VPM) of the thalamus. Sensory 
information originating from the whisker pad is con-
veyed to the VPM through synapses originating from 
the brainstem principal trigeminal nucleus. As active 
whisker movement begins (around P14 in mice), a sub-
set of whisker-specific inputs in the VPM are strength-
ened, while others are pruned69. Evidence suggests that 
astrocytic calcium signalling induces purinergic signal-
ling, which then impinges on P2Y1 receptors on VPM 
neurons to facilitate the pruning of a subset of synapses 
during development70.

Together, these studies emphasize the importance 
of activity for driving the selective elimination and sta-
bilization of synaptic sites. While the model circuits 
described above established fundamental principles of 
activity-driven synaptic pruning in mammalian circuits, 
major gaps still remain in our knowledge. To what extent 
does pruning occur throughout the entire CNS? Are all 
neurons and circuits pruned or is pruning limited to a 
subset of circuits or neurons? If so, why? A major imped-
iment to progress in answering these questions is that the 
developmental timing of this pruning is different across 
CNS regions. In addition, the timing and neuron sub-
type undergoing pruning throughout the CNS in one 
species may not necessarily align with those in other 
species. In many complex circuits, including the cortex, 
it is also often difficult to discern the cellular source  
of presynaptic inputs for each synapse, which is needed 
to selectively modulate activity during pruning. Instead, 
it has been more tractable to focus on these classic model 
circuits in which the presynaptic and postsynaptic part-
ners are clearly defined. These model circuits have fur-
ther paved the way to the identification of exciting new 
molecular mechanisms that are activity dependent and 
regulate synaptic pruning (discussed next).

Immune-mediated synaptic pruning
Besides the mechanisms described so far herein, mole-
cules canonically involved in immune system function 
have also been identified as key regulators of develop-
mental, activity-dependent synaptic pruning. In some 
cases, these immune molecules and cells regulate prun-
ing in a fashion very similar to how they function in the 
immune system71. In this section, we give a historical 
perspective of these findings and highlight the most 
recent work outlining key roles for these molecules in 
shaping developing neural circuits.

Neuron-intrinsic immune signalling that regulates  
synaptic pruning. Excitement about the involvement of  
immune signalling in synaptic pruning began with the 
discovery of activity-dependent regulation of major  

histocompatibility complex (MHC) class I antigen 
expression in the LGN72. Later, MHC class I molecules 
were shown to be expressed by neurons73. Further
more, mice lacking all cell surface expression of MHC 
class I (including B2m−/− mice lacking the MHC class I 
component β2-microglobulin (β2M) and Tap1−/− mice  
lacking the antigen peptide transporter TAP1), mice lac
king the MHC receptor component CD3ζ and mice 
deficient in two of the 50 MHC class I genes (KbDb−/− 
mice) all have deficits in retinogeniculate eye-specific 
segregation73,74. Mice deficient in MHC class I genes 
or the MHC receptor PirB (also known as LIR3) also 
had enhanced ocular dominance plasticity, diminished 
LTD73,75,76 and elevated spine density in the visual cortex76. 
While these results demonstrate a role for MHC mole-
cules and receptors in pruning, it is important to consider 
that MHC molecules and receptors may also affect ini-
tial synapse formation, as suggested by a study showing 
elevated synaptogenesis in cultured B2m−/− neurons77. 
It is also unclear how MHC class I–receptor signalling 
leads to pruning78. In the immune system, these mole-
cules are key factors involved in antigen presentation, 
which activates neighbouring adaptive immune cells to 
initiate destruction of foreign antigens, such as viruses. 
The T cell receptors that bind to MHC class I complexes 
are not expressed in the CNS, but the co-receptors CD3ζ 
and CD3ε are present. The natural killer cell receptors for 
MHC class I molecules, PirB and Ly49, are expressed in 
the CNS, but exactly how MHC class I molecules interact 
with these receptors to regulate pruning is not known. 
Synaptic pruning could represent a separate function 
from the antigen presentation function of MHC class I 
in the immune system, including interactions with other 
immune-related molecules involved in pruning, such as 
neuronal pentraxins and complement proteins.

Pentraxins form two subfamilies on the basis of 
their length, namely the short pentraxins and the long 
pentraxins, which include pentraxin 3 (PTX3), PTX4 
and the neuronal pentraxins. Pentraxins are cyclic 
multimeric proteins that are characterized by calcium- 
dependent ligand binding, and some are involved in the 
innate immune response79. Neurons express neuronal 
pentraxin 1 (NP1; encoded by NPTX1) and NP2 (also 
known as NARP; encoded by NPTX2), as well as neu-
ronal pentraxin receptor (NPR). These neuronal pen-
traxins share 20–30% sequence homology with the short 
pentraxins in the peripheral immune system. In contrast 
to short pentraxins, neuronal pentraxins have a different 
tertiary structure, and there is little evidence to support 
roles for them in innate immunity80–82. NP1 and NP2 
form heteromeric complexes that regulate AMPA recep-
tor clustering and synapse plasticity83, and knockdown 
of Nptx1 in cultured rat neurons results in increased 
numbers of synapses84. Mice deficient in NP1 and NP2 
also have deficits in eye-specific segregation in the 
retinogeniculate system, implicating these molecules in 
pruning of presynaptic terminals85. In peripheral immu-
nity, non-neuronal pentraxin molecules can activate 
the classical complement cascade through complement 
component 1q (C1q) and play a role in phagocytosis86,87. 
Therefore, one possibility is that, in the CNS, neuronal 
pentraxins and MHC class I molecules could be working 
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together with complement to mediate synaptic pruning 
by modulating microglial phagocytosis (discussed in the 
next section). Indeed, in adult mice, neuronal pentraxins 
co-immunoprecipitate with C1q in cortex-derived syn-
aptosomes, and these molecules are colocalized in vivo 
at cortical synapses88, but it remains unknown whether 
these interactions occur during developmental synaptic 
pruning.

Microglia-dependent immune signalling and synaptic 
pruning. Microglia are resident macrophages of the 
CNS. Similarly to other tissue-resident macrophages, 
microglia are efficient phagocytes and key regulators of 
innate immune signalling in the CNS. The first evidence 
that microglia are involved in synaptic pruning was 
obtained from studies of the developing hippocampus, 
visual cortex and retinogeniculate system51,89,90, which 
revealed that microglia engulf synaptic components.  
In the visual cortex and retinogeniculate system, devel-
opmental synaptic pruning by microglia is regulated by 
activity, as microglia engulf synapses from less active 
neurons51,90,91. Microglial engulfment of synapses has 
also been observed in other regions of the developing 
brain, such as the auditory brainstem, auditory cortex, 
primary and secondary somatosensory cortices, and 
nucleus accumbens65,92–95.

Despite mounting evidence that microglial engulf-
ment mechanisms underlie activity-dependent synap-
tic pruning, whether microglia more passively ‘clean 
up’ synaptic debris or play a more active role in initi-
ating synaptic pruning remains to be fully deciphered. 
Arguing for a more active role, live and static imaging 
in rodents and Xenopus laevis demonstrated microglial 
trogocytosis of intact presynaptic membranes but not 
postsynaptic structures96,97, which is consistent with 
other studies showing selective phagocytosis of presyn-
aptic membranes65,90. Furthermore, studies from multi-
ple groups showed that disrupting microglial engulfment 
results in sustained increases in the number of structural 
and functional synapses65,89,90,94,98–100. For example, mice 
lacking the fractalkine (also known as CX3CL1) recep-
tor CX3CR1 (Cx3cr1−/− mice), a G-protein-coupled 
chemokine receptor that is highly enriched in micro-
glia in the healthy CNS101, show delayed microglial 
infiltration into the hippocampus concomitant with 
delays in synapse maturation and a transient elevation 
in spine density89. Adolescent to early adult Cx3cr1−/− 
mice also had increased excitatory synaptic connectivity 
in the hippocampus and defects in sociability99. More 
recently, CX3CR1 signalling was shown to directly affect 
microglial synapse engulfment and activity-dependent 
pruning of presynaptic terminals, but not postsynaptic 
structures, in the somatosensory cortex following neo-
natal whisker lesioning65. Following whisker removal, 
microglia engulf and remove thalamocortical presyn-
aptic inputs in the neonate somatosensory cortex. This 
process was blocked in Cx3cr1−/− mice and in Cx3cl1−/− 
mice, which lack the canonical CX3CR1 ligand CX3CL1. 
Furthermore, transcriptional profiling revealed that 
whisker removal elicited an increase in the expres-
sion of the metalloproteinase ADAM10, which cleaves 
CX3CL1 into a secreted form, in layer IV Rorb+ neurons 

and microglia. Pharmacological inhibition of ADAM10 
phenocopied the defects in engulfment and pruning of 
synapses in Cx3cr1−/− and Cx3cl1−/− mice. Together, these 
results suggest a mechanism by which CX3CL1 is cleaved 
by ADAM10 in an activity-dependent manner; CX3CL1 
then binds to microglial CX3CR1 and induces pruning of 
presynaptic terminals (Fig. 2a). In the immune system, the 
canonical function of CX3CR1 is to regulate recruitment 
of myeloid cells102. However, in the barrel cortex follow-
ing whisker ablation, microglial recruitment is unaffected 
and only synapse engulfment is blocked in Cx3cr1−/− and 
Cx3cl1−/− mice. Interestingly, CX3CR1 is required for 
phagocytosis of necrotic fibres after acute skeletal mus-
cle injury by macrophages in vivo and phagocytosis of 
apoptotic cells by bone marrow-derived macrophages 
in vitro103,104. However, the signalling downstream of 
this G-protein-coupled chemokine receptor that leads 
to regulation of engulfment remains to be ascertained.

Besides CX3CR1, microglial engulfment and pruning 
of synapses are also regulated by the classical comple-
ment cascade (Fig. 2b). In the innate immune system, the 
classical complement cascade-initiating molecule C1q 
forms part of the C1 complex that cleaves the comple-
ment factors C2 and C4. The C2b and C4b fragments 
then form C3 convertase, which cleaves and acti-
vates C3. C3, in turn, binds to pathogens and cellular 
debris to induce cell lysis and/or clearance by phago-
cytes (reviewed elsewhere105,106). Similarly, C1q and C3 
proteins localize to retinogeniculate synapses during 
developmental pruning, and microglia then engulf and 
remove presynaptic terminals via microglia-expressed 
C3 receptor complement receptor 3 (CR3)90,98. 
Importantly, C1q−/− (also known as C1qa−/−), C3−/− and 
Cr3−/− (also known as Itgam−/−) mice have defects in 
eye-specific segregation, impaired removal of structural 
presynaptic terminals and failure to eliminate functional 
synapses in the retinogeniculate system98. In other brain 
regions, C1q−/− mice have an increased number of axonal 
boutons and elevated cortical seizure activity107, and 
CR3-dependent phagocytosis has been implicated in 
the removal of neuronal dopamine D1 receptors in the 
nucleus accumbens in adolescent male mice94. However, 
it remains to be determined whether pruning in the 
nucleus accumbens involves removal of postsynaptic 
receptors from the postsynaptic membrane or elimina-
tion of structurally intact synapses. One of the biggest 
questions emerging from these complement-dependent 
pruning studies is how does complement, a secreted 
protein, lead to the elimination of some synapses but 
not others? A few recent breakthroughs suggest that 
molecular inhibitors of microglial synapse engulfment 
are involved. First, a canonical ‘do not eat me’ immune 
system molecule, CD47, is expressed by RGCs, and 
CD47 and its cognate receptor SIRPα on microglia are 
required for activity-dependent synaptic pruning in the 
retinogeniculate system108 (Fig. 2a). Second, an endoge-
nous C1q inhibitor, SRPX2, is expressed by neurons109, 
and Srpx2−/− mice have increased C3 deposition, elevated 
engulfment of presynaptic terminals by microglia and 
abnormal eye-specific segregation in the retinogenicu-
late system109 (Fig. 2b). Last, in addition to complement 
inhibition, changes in sialyation and/or externalization 
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The internalization or 
phagocytosis of material  
by a cell for degradation.

Trogocytosis
Partial phagocytosis  
of membrane material  
(trogo means ‘nibble’)  
while leaving the remaining 
membrane intact.
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of phosphatidylserine (PtdSer) residues on synapses 
in the retinogeniculate system and hippocampus tar-
get the binding of complement to a specific subset of 
synapses110–112 (discussed later).

An emerging concept from these studies is that the 
mechanisms regulating synaptic pruning by microglia 
are region specific and context dependent. For example, 
early pruning in the developing retinogeniculate system 
is dependent on complement but not on CX3CR1 (ref.113). 
CX3CR1 is also dispensable for climbing fibre pruning 
in the cerebellum114. Conversely, developmental prun-
ing of hippocampal or barrel cortex synapses is depend-
ent on CX3CR1 but not on CR3 (refs65,96,115). In the visual 
cortex, microglia engulf synaptic material during vis
ual deprivation51,116 but CX3CR1 and complement do not  

regulate ocular dominance plasticity113,117. Instead, defi-
ciency in the microglial purinergic receptor P2RY12 
results in reduced microglial synapse engulfment and 
defects in ocular dominance plasticity91. One possibility 
is that microglia influence neuronal activity via P2RY12, 
which has been shown to modulate neural excitability in 
other brain regions118,119. This P2RY12-dependent mod-
ulation of neuronal activity by microglia, in turn, stim-
ulates engulfment of synapses by a yet-to-be-identified 
mechanism. Furthermore, recent studies suggest that 
microglia regulate pruning by other non-phagocytic 
mechanisms. In the cerebellum, microglia affect climbing 
fibre pruning by promoting GABAergic innervation of 
cerebellar Purkinje cell somas, which influences weaken-
ing of a subset of climbing fibre synapses30,42. In addition, 
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motif chemokine ligand 1 (CX3CL1; also known as fractaline), C-X3-C motif 
chemokine receptor 1 (CX3CR1) and a disintegrin and metalloproteinase 
domain-containing protein 10 (ADAM10). The protease ADAM10 cleaves 
neuron-expressed CX3CL1 from the membrane, which binds to its receptor 
CX3CR1 on microglia and initiates signalling. CX3CR1 signalling induces 
synapse engulfment by microglia by a yet-to-be-identified mechanism65. 
b | Microglial synaptic pruning through the complement signalling cascade. 
Complement component 1q (C1q) induces the formation of C3 convertase 
through cleavage of the complement factors C2 and C4. C3 convertase then 
cleaves and activates C3, which induces engulfment of synapses by 
microglia expressing complement receptor 3 (CR3)90,98. By contrast, CD47 
binding to its receptor signal regulatory protein-α (SIRPα) on microglia 

inhibits engulfment of another subset of synapses108. Similarly, the 
complement inhibitor sushi repeat-containing protein X-linked 2 (SRPX2) 
binds to C1q at the synaptic membrane, thereby preventing C1q-mediated 
engulfment and pruning of synapses109. c | Astrocytes also prune synapses 
through the phagocytic receptors multiple epidermal growth factor-like 
domains protein 10 (MEGF10) and MER proto-oncogene tyrosine kinase 
(MERTK). MERTK may bind directly to externalized phosphatidylserine 
(PtdSer) at the synaptic membrane121. d | Astrocyte–microglia crosstalk has 
been implicated in synaptic pruning. For example, astrocyte production of 
transforming growth factor-β (TGFβ) induces C1q production by retinal 
ganglion cells, which influences microglial pruning100. In addition, 
interleukin-33 (IL-33) produced by astrocytes binds to the IL-33 receptor 
IL-1 receptor-like 1 (IL1RL1) on microglia and induces microglia to engulf 
and prune synapses by a yet-to-be-identified downstream mechanism125.
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during a later stage of experience-dependent pruning in 
the retinogeniculate system, microglia-derived TWEAK 
(a TNF family cytokine also known as TNFSF12) acts by 
binding to neuronal FN14 (also known as TNFRSF12A) 
to facilitate strengthening of synapses along thalamic 
relay neuron dendritic spines62. Another contrast may 
be between glutamatergic vs. GABAergic synapses 
which were recently shown to be pruned by microglia 
in the developing somatosensory cortex via a mecha-
nism dependent on microglial “GABAB” receptors120. 
Precisely how these different mechanisms drive pruning 
in specific circuits at specific times remains a key open 
question, which we discuss extensively below.

Microglia–astrocyte immune crosstalk in synaptic prun-
ing. In addition to microglia, astrocytes have also been 
implicated in developmental synaptic pruning. Like 
microglia, astrocytes engulf retinogeniculate synapses 
in an activity-dependent manner121. Mice lacking the 
astrocyte-enriched engulfment receptor MEGF10 or 
the TAM receptor MERTK, which are typically used 
by phagocytes to engulf and clear apoptotic cells, have 
reduced astrocytic synapse engulfment and fail to prop-
erly prune retinogeniculate synapses121 (Fig. 2c). While 
MEGF10 is highly enriched in astrocytes in the mam-
malian CNS, MERTK is expressed by both astrocytes 
and microglia. In contrast to astrocytes, microglial 

engulfment of retinogeniculate inputs is increased in 
Mertk−/− mice, but not at sufficient levels to rescue syn-
aptic pruning deficits121. These data raise the question 
as to which cell type is most important for developmen-
tal synaptic pruning. Immunofluorescence microscopy 
showed more engulfed material per cell in microglia 
than in astrocytes, but owing to their larger population, 
astrocytes engulfed more material in total121. It is con-
ceivable that astrocytes perform the bulk of the pruning 
of retinogeniculate axons and synapses, whereas micro-
glia are involved in more local pruning and refinement. 
Interestingly, in the adult mouse hippocampus, astro-
cytes more readily engulf synaptic material122, although 
it is important to note that in vitro experiments have 
revealed that the kinetics of phagocytosis and degra-
dation of phagocytosed material are faster in microglia 
than in astrocytes123. Therefore, if the kinetics of phago-
cytosis are similar in vitro and in vivo, engulfment of 
synaptic material in vivo may be more easily detected 
with static imaging for astrocytes than for microglia.

Besides engulfment, astrocyte-secreted factors have 
also been shown to regulate pruning of synapses. For 
example, the astrocyte-secreted molecule hevin (also 
known as SPARCL1) is necessary for the elimination of 
exuberant synapses in the developing visual cortex124. 
It is intriguing to consider that this molecule might be 
signalling to microglia, as astrocyte–microglia cross-
talk has been shown to regulate microglial engulfment 
and pruning of synapses in other contexts (Fig. 2d). For 
example, astrocyte-derived transforming growth factor-β 
(TGFβ) induces expression of C1q, which is necessary for 
complement-mediated retinogeniculate synapse pruning 
by microglia100. In sensorimotor circuits, astrocyte-derived 
interleukin-33 (IL-33) binds to its receptor IL1RL1 (also 
known as ST2) on microglia to stimulate engulfment and 
pruning of synapses125. Conversely, microglia may also 
direct synapse engulfment by astrocytes, as suggested by 
studies showing that microglia in the hippocampus regu-
late synaptic pruning by triggering receptor expressed on 
myeloid cells 2 (TREM2)-mediated signalling112,126,127, in 
addition to CX3CR1. One of these studies suggested that 
TREM2 in microglia normally limits synaptic pruning 
by astrocytes in the developing hippocampus127. TREM2 
deficiency removes this limit and results in exuberant 
pruning by astrocytes during hippocampal develop-
ment. However, the identity of the TREM2-dependent 
signal from microglia that restrains astrocyte engulfment 
remains unknown.

These studies have identified a diverse array of 
immune signalling mechanisms that are required for 
developmental synaptic pruning. Emphasizing their 
importance, many of these mechanisms are evolutionar-
ily conserved (Box 1). However, fundamental questions 
remain about the timing and extent of immune signal-
ling involvement in developmental synaptic pruning. 
First, many studies examine synaptic changes at only one 
time-point, usually once pruning is finished. Therefore, it 
is possible that, in addition to or instead of pruning, some 
of these molecules might regulate initial synaptogenesis, 
which would result in a phenotype that is identical to 
a pruning defect at older ages. Assessing synapse den-
sity before and after pruning in mutant animals is key. 

Box 1 | Conserved pruning mechanisms in invertebrates

Two of the major immune signalling pathways that are implicated in synaptic pruning — 
major histocompatibility complex (MHC) class I and complement — seem to be specific 
to vertebrates. However, many of the other molecules involved in activity-dependent 
synaptic pruning were first shown to function in axonal or dendrite pruning in 
invertebrates. For example, glial cell-mediated engulfment of neuronal compartments 
during pruning is highly conserved. Indeed, glial cells in the fruit fly Drosophila 
melanogaster engulf axons and sensory endings during developmental pruning234. This 
process is regulated by Draper235–237, the fly homologue of mammalian MEGF10, which 
regulates astrocyte-mediated pruning121. The Caenorhabditis elegans Draper homologue 
CED-1 performs a similar function in cholinergic synapse pruning238. Furthermore, 
secreted immune molecules involved in mammalian synaptic pruning also seem to 
regulate pruning in invertebrates. For example, the Drosophila chemokine-like protein 
Orion, which has some functional similarity to mammalian fractalkine (also known as 
CX3CL1), regulates glial cell recruitment and engulfment of axons during mushroom body 
pruning239. In addition, just as astrocyte-derived transforming growth factor-β (TGFβ) 
signalling has been implicated in driving complement-mediated pruning in mammals100, 
so too does the D. melanogaster TGFβ family member Myoglianin drive axonal pruning  
in developing fly embryos240. However, unlike TGFβ in mammals, Myoglianin seems to be 
acting neuron intrinsically to promote pruning in D. melanogaster.

Cell death signalling during pruning is also evolutionarily conserved. The role of 
caspases in programmed cell death was first demonstrated in C. elegans, in which  
the mammalian caspase 9 (CASP9) homologue CED-3 regulates cell survival241. It is  
now appreciated that this signalling can be compartmentalized to regulate cellular 
remodelling without inducing cell death242. In the C. elegans nervous system, CED-3 
cleaves and activates the actin-severing protein gesolin (GLSN-1) to promote 
disassembly of presynaptic machinery during synapse remodelling243. In addition,  
in GABAergic neurons, local calcium concentration increases activates calcineurin, 
which in turn activates CED-3 to promote dismantling of the presynaptic machinery244. 
Downstream of caspase activation and similarly to in mammals, local exposure of 
phosphatidylserine in the outer membrane layer regulates subsequent amphid  
sensory organ sheath glial cell engulfment of sensory endings in C. elegans245.

Together, these data point to evolutionarily conserved mechanisms driving synaptic 
pruning by glia and immune and cell death molecules. A better understanding of how 
changes in activity regulate invertebrate pruning could open up powerful new systems 
to provide insights into activity-dependent synaptic pruning in mammals.
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Second, given the diversity of molecular players identified 
across different circuits, immune signals during synaptic 
pruning are circuit specific rather than a ‘one-size-fits-all’ 
mechanism. How this circuit specificity is achieved is 
unclear and could be a result of molecular and func-
tional diversity of neurons and/or glia. Differing gene 
expression and/or levels of activity could elicit different 
signalling cascades in neurons, which could then elicit 
diversity in glial cell responses. Third, while it is clear that 
the expression and/or localization of immune molecules 
changes in response to activity, it is unclear how. One 
possibility is through a newly identified mechanism — 
modulation of activity-dependent axonal and synaptic 
pruning by JAK2–STAT1 signalling. In the developing 
retinogeniculate and callosal projections in mice, the pro-
tein tyrosine kinase JAK2 is activated in inactive neu-
rons and synapses, but only when neighbouring neurons 
and synapses remain activated128. This JAK2 activation 
leads to the pruning of inactive synapses through activa-
tion of the downstream transcription regulator STAT1. 
JAK2–STAT1 is a canonical signalling cascade in the 
immune system and mediates cytokine receptor signal-
ling. Which molecules are transcriptionally regulated by 
JAK2–STAT1 signalling to induce the selective elimina-
tion of inactive synapses is unclear, but it is intriguing 
that the expression of many of the immune molecules 
discussed above is altered by JAK2–STAT1 signalling.

Cell death molecules at the synapse
Besides immune molecules and signalling path-
ways, evolutionarily conserved molecules involved  
in cell death signalling (Box 1) have been implicated in 
activity-dependent synaptic pruning. The mechanisms 
described in the following sections are recognized as 
primary drivers of apoptosis and clearance of apoptotic 
debris by phagocytes. However, it is becoming increas-
ingly appreciated that these mechanisms can be spatially 
and temporally restricted to drive pruning in the absence 
of cell death. In some cases, they may also be operat-
ing upstream of immune molecules to regulate their  
localization to synapses during pruning.

Activation of caspases and phosphatases. The protease 
caspase 3 (CASP3) is activated during mitochondrion- 
mediated apoptosis and cleaves hundreds of different 
protein substrates that mediate DNA fragmentation, 
PtdSer exposure and membrane blebbing129. In vitro 
studies have revealed that mitochondrial CASP3 acti-
vation can be compartmentalized in dendritic spines, 
leading to LTD via AKT1 cleavage and AMPA receptor 
internalization130,131, and subsequent spine pruning132. 
In addition, hippocampal spine pruning is defective in  
Casp3−/− mice132. Of note, the level and duration of 
CASP3 activation during LTD pruning are lower than 
in apoptosis, possibly due to proteasomal degradation 
of CASP3 in the dendrites to prevent precocious cell 
death131,132. CASP2 has also been implicated in dendritic 
spine pruning133. Similarly to Casp3 knockout130,131, 
Casp2 knockout results in defects in LTD and increased 
numbers of dendritic spines in hippocampal neurons, 
both in vitro and in vivo. Finally, another cell death 
molecule, the calcium-dependent protein phosphatase 

calcineurin134, has been implicated in pruning. In 
mammals, calcineurin is regulated by myocyte-specific 
enhancer factor 2 (MEF2) to initiate degradation of 
PSD95 in an activity-dependent manner, which leads to 
dendritic spine elimination135–137.

PtdSer exposure. Downstream of caspases is PtdSer. 
PtdSer is normally restricted to the inner leaflet of the  
plasma membrane but it becomes externalized on  
the surface of apoptotic cells by scramblases, which are 
activated by caspases. During apoptosis, TAM receptor 
complexes on phagocytes bind to externalized PtdSer, 
leading to engulfment and clearance of apoptotic cell 
bodies138. Similarly, during developmental synaptic prun-
ing in the retinogeniculate system and hippocampus, 
PtdSer is exposed on a subset of mostly presynaptic termi-
nals, which are subsequently cleared by microglia111,112,139.  
It is unclear whether TAM receptors, such as MERTK, 
bind to PtdSer during synaptic pruning. However, 
other immune molecules required for synaptic pruning 
have been shown to bind to PtdSer, including C1q140, 
GPR56 (ref.139) and TREM2. Treatment with annexin V, 
which binds to externalized PtdSer, or deletion of Trem2 
in vitro leads to reduced microglial engulfment and inhi-
bition of hippocampal synaptic pruning112. In addition, 
C1q deficiency in mice leads to accumulation of exposed 
PtdSer, primarily at presynaptic structures, and reduced 
microglia-mediated pruning of presynaptic terminals 
in the retinogeniculate system112,139. Although an earlier 
study provided ex vivo data to support that C1q-tagged 
synapses are enriched in activated CASP3 and exposed 
PtdSer compared with untagged synapses111, this later 
work in the retinogeniculate system showed that stimu-
lation of microglia-mediated synaptic pruning by PtdSer 
exposure was not downstream of CASP3 activation112. 
Published in parallel, another group showed that the 
microglial adhesion G-protein-coupled receptor GPR56 
binds directly to PtdSer139. Similarly to in C1q-deficient 
mice, conditional ablation of GPR56 in microglia leads 
to reduced PtdSer exposure and pruning of presynaptic 
terminals. These data point to GPR56, TREM2 and com-
plement proteins working in concert to regulate micro-
glial pruning of synapses by binding to PtdSer. It remains 
to be determined whether these pathways regulate  
each other or whether they work in parallel to perform 
a similar function.

A potential role for mitochondria. Although the available 
evidence suggests that molecules that normally regulate 
cell death are compartmentalized at the synapse to reg-
ulate synaptic pruning, it remains less clear how they are 
initially activated at some synapses and not others. One 
potential mechanism is through the aforementioned 
JAK–STAT signalling, which is activated in inactive 
synapses, leading to their removal128. In addition to reg-
ulating immune molecules, JAK–STAT signalling also 
regulates the expression of caspases during cell death in 
other contexts (reviewed in141). Another possibility is that 
mitochondria may be an important link between changes 
in activity at a given synapse, compartmentalized cell 
death signalling and the physical removal of the synapse. 
Indeed, elevated mitochondrial calcium concentration is 

Apoptosis
A canonical highly regulated 
process of programmed cell 
death that occurs in multiple 
contexts, including during 
development, and involves 
membrane blebbing, cell 
shrinkage and DNA 
fragmentation.
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required for LTD-dependent elimination of spines in cul-
tured hippocampal neurons130. In addition, reducing the 
amount of mitochondria in dendrites leads to a reduction 
in dendritic spine density in cultured neurons, while an 
increase in mitochondrial content supports synaptogen-
esis and plasticity142. Furthermore, live imaging in adult 
mouse cortex and hippocampal slices has revealed that 
presynaptic terminals with more mitochondria are sta-
bler and decreased presynaptic mitochondria motility 
is associated with increased synaptic strength143,144. It is 
crucial to understand how these mitochondrial changes 
may be relevant to synaptic pruning during development 
in vivo, as mitochondrial changes may be an important 
link by which activity drives the selective elimination of 
some synapses and maintenance of others.

Together, these data demonstrate that calcium- 
dependent cell death pathways involving caspases and 
calcineurin facilitate synaptic pruning. Externalized 
PtdSer, which may be downstream of local caspase acti-
vation, provides a substrate to initiate immune-mediated 
synaptic pruning by glial cells (Fig.  3). Upstream 
JAK–STAT signalling and/or mitochondria may be key 
in selective elimination of synapses based on activity.

Disease mechanisms in synaptic pruning
In humans, synaptic pruning occurs primarily during two 
developmental periods: the first 2 years after birth and 
during adolescence1 (Fig. 4). Studies suggest that defects 
in synaptic pruning during both developmental periods 
underlie several neurodevelopmental disorders145–153. 
Here we focus on ASD and schizophrenia to highlight 
how, in addition to the molecules described so far herein, 
many disease-associated genes contribute to changes in 
neural circuit structure and function through disruptions 
in synaptic pruning (summarized in Table 1).

Genes associated with ASD. ASD is typically diagnosed 
within the first 5 years of life, coincident with the first 
wave of synaptic pruning1,154. Analyses of post-mortem 
ASD tissue samples have shown increased synapse den-
sity compared with neurotypical controls in the frontal, 
temporal and parietal lobes, suggesting an underpruning 
phenotype155,156. Transcriptomic analyses of post-mortem 
ASD brain tissue further show significant changes in the 
expression of genes associated with pruning157 and hypo-
methylation of immune genes involved in synaptic prun-
ing, including C1QA, C3 and C3R (ref.158). Whole-exome 
sequencing and genome-wide association studies also 
point to the involvement of molecules that regulate  
synapse formation and synaptic plasticity in ASD159,160.

In addition to these genetic associations, recent stud-
ies in mice harbouring mutations or deletions in syn-
dromic ASD-linked genes provide further support for 
the involvement of activity-dependent synaptic pruning 
deficits in ASD pathogenesis. For example, Fmr1−/− mice 
have been used to study fragile X syndrome, a disorder 
with high incidence of ASD that is caused by mutations 
in FMR1, the gene encoding fragile X mental retardation 
protein (FMRP). FMRP is a known repressor of mRNA 
translation through binding to eIF4E161, is regulated by 
neuronal activity162,163 and regulates activity-dependent 
synaptic plasticity164,165. FMRP also works in concert 

with the ASD-linked MEF2 transcription factor fam-
ily (refs166–168) which no longer performs its normal 
role in activity-dependent spine elimination in Fmr1−/− 
mice137,169–171. In addition, an increased number of spines 
has been reported in the neocortex in individuals with 
fragile X syndrome172,173 and in the hippocampus and 
cortex in Fmr1−/− mice, which also show impaired ocu-
lar dominance plasticity174–176. A link between FMRP 
and the immune mechanisms discussed previously 
is provided by a study showing an impairment in 
microglia-mediated engulfment of postsynaptic struc-
tures in the hippocampus of Fmr1−/− mice175. However, 
it is important to note that assessment of synaptic prun-
ing is complicated by evidence that there are defects 
in synapse stabilization and synaptogenesis in Fmr1−/− 
mice177,178. Furthermore, other studies find the opposite 
or no change in spine number in Fmr1−/− mice, which 
are likely due to differences in the age of the mice used 
in the study, the brain region assessed and the meth-
ods used for counting spines174. However, in support 
of aberrant synaptic pruning in fragile X syndrome, a 
time course of paired electrophysiological recordings 
of layer V pyramidal neurons demonstrated that excess 
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Fig. 3 | Cell death molecules involved in synaptic pruning. 
During synaptic pruning, mitochondrial molecules in the 
dendrite activate caspase 3 (CASP3), which drives α-amino- 
3-hydroxy-5-methyl-4-isoxazolepropionic-acid (AMPA) 
receptor internalization from the postsynaptic membrane 
and results in long-term depression (LTD)130,131. Caspase 2 
(CASP2) also induces AMPA receptor internalization, 
although this occurs by a separate pathway133. Activity- 
dependent changes at the synapse, for example via  
LTD, may also influence mitochondrial processes and 
compartmentalized cell death molecules to regulate 
pruning (dashed arrows). In some but not all cases, caspase 
signalling leads to externalization of phosphatidylserine 
(PtdSer) to the outer membrane at synapses. Molecules  
such as complement component 1q (C1q), G-protein- 
coupled receptor 56 (GPR56) and triggering receptor 
expressed on myeloid cells 2 (TREM2) can bind to this 
exposed PtdSer to regulate pruning by microglia112,126,139.
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cell-to-cell connections in Fmr1−/− mice were indeed due 
to impaired pruning179. Given that activity-dependent 
pruning is dependent on the strengthening and stabili-
zation of ‘winning’ synapses, it is possible that defects in 
spine stabilization or spine dynamics contribute to these 
changes in pruning. Indeed, enhanced spine dynamics 
have been noted in mice with genetic mutations linked 
to syndromic ASD, including 15q11–13 duplication and 
Nlgn3R451C (ref.180).

Other syndromic ASD-linked genes that regulate 
synaptic pruning include mTOR signalling pathway 
components, which represent another set of mRNAs 
that are regulated by FMRP181. For example, neuronal 
deletion of the phosphatase and tensin homologue gene 
(PTEN), which is mutated in ~1–4% of ASD cases182 and 
is an upstream inhibitor of mTOR, leads to increased 
spine density and altered social behaviour in mice183. 
Mutations in the genes encoding the negative regu-
lators of mTOR tuberous sclerosis 1 protein (TSC1) 
and TSC2 cause tuberous sclerosis, which is another 
disorder with a high incidence of ASD. In Tsc1−/− mice 
or Tsc2+/− mice, spine density is increased in the cere-
bellum and cortex155,184. These synaptic changes occur 
concomitant with overactive mTOR signalling in both 
ASD brain tissue and Tsc2+/− neurons154, which likely 

exerts its effects on spines and behaviour by modulating 
neuronal autophagy155, a cellular process for the degra-
dation of proteins and organelles. The exact mechanism 
by which modulation of autophagy leads to synaptic 
pruning remains unknown. However, there is evidence 
that mitochondria, well-known targets of autophagy, 
are depleted at presynaptic sites in TSC1-deficient and 
TSC2-deficient neurons185, which could affect synaptic 
pruning. Autophagy can also be induced presynaptically 
by neuronal activity186,187 and can regulate synaptic trans-
mission and plasticity by degrading synaptic vesicles and 
postsynaptic proteins188–191. Thus, autophagy induced 
by changes in mTOR signalling may play a similar role  
in activity-dependent pruning, and disruptions in  
autophagy may contribute to aberrant pruning in ASD.

These studies demonstrate clear links between alter-
ations in mRNA translation and autophagy in neurons 
and alterations in synapse numbers in ASD. However, 
all of these molecules are expressed by numerous cell 
types throughout the CNS, so the contribution of 
non-neuronal cell types to synaptic alterations in ASD 
must be considered. Selective overexpression of the 
FMRP target eIF4E in microglia results in increased 
spine density and ASD-like behaviours in mice192, a phe-
notype that largely recapitulates that observed in mice 
with global overexpression of eIF4E193,194. Furthermore, 
selective disruption of the core autophagy gene Atg7 in 
LYZ2+ myeloid cells, which may include microglia, also 
impairs synaptic pruning95. Thus, disruptions in mRNA 
translation and autophagy in multiple cell types may 
contribute to synaptic alterations in ASD.

Genes associated with schizophrenia. Schizophrenia is 
typically diagnosed at a later age than ASD, typically 
between late adolescence and the mid-to-late 20s195. 
However, even before the full onset of schizophrenia, 
cognitive deficits and structural changes can be detected 
in ‘high-risk’ individuals196. The emergence of symptoms 
towards the end of the second wave of pruning led to 
the hypothesis that aberrant synaptic pruning during 
adolescence contributes to schizophrenia197. In contrast 
to ASD, data from patients with schizophrenia and ani-
mal models of schizophrenia suggest the presence of 
an overpruning defect. For example, studies in patients 
with schizophrenia reveal progressive loss of grey mat-
ter volume198, especially during the initial phase of the 
disease199. Examination of post-mortem tissue has also 
revealed a layer-specific loss of spines200,201 and presyn-
aptic proteins202–204, particularly in layer III of the pre-
frontal cortex. Similarly, positron emission tomography 
with a ligand for the synaptic marker SV2A has revealed 
reduced density of presynaptic terminals in the brain of 
patients with schizophrenia205.

Synaptic pruning defects in schizophrenia are also 
supported by genetic analyses. Genetic variations that 
are over-represented in schizophrenia predominantly 
affect synaptic genes160,206,207. In several cases, reduced 
spine density has been observed in transgenic mouse 
models lacking or harbouring mutations in schizophre-
nia risk genes208–210, including mice haploinsufficient 
for the histone-lysine N-methyltransferase gene Setd1a. 
However, it is unknown whether these changes are due 
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Fig. 4 | Synaptic pruning and neurodevelopmental disorders. Schematic depicting 
putative development changes in synapse density in the brains of neurotypical 
individuals compared with patients with autism spectrum disorder (ASD)155,156 or 
schizophrenia198–205. The developmental periods in early life and adolescence when 
synaptic pruning primarily occurs are highlighted in yellow1. Genetic risk factors that are 
implicated in aberrant pruning during these two periods include the genes encoding 
tuberous sclerosis 1 protein (TSC1) and TSC2155,184, phosphatase and tensin homologue 
(PTEN), fragile X mental retardation protein (FMRP)137,161,169–175,177–179 and eukaryotic 
translation initiation factor 4E (eIF4E)192–194 in ASD, and complement C4A (refs213–216)  
and major histocompatibility complex class I (MHC class I) genes78,212 in schizophrenia. 
Environmental risk factors that may, in concert, affect pruning218–223 include maternal 
infection223,225–228, obstetric complications and maternal diet229,230 in utero and pollution, 
infection and early life stress later during early life development. Adapted from ref.153, 
Springer Nature Limited.
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Table 1 | Summary of synaptic pruning studies in neurodevelopmental disorders discussed in this Review

Disorder Evidence for changes in pruning Brain region Refs

Humans

Autism spectrum disorder Increased spine density

Failure to eliminate spines over 
development

Temporal cortex 155

Increased spine density Temporal cortex, frontal cortex  
and parietal cortex

156

Transcriptional profiling reveals changes  
in immune/glial mRNA related to pruning

Combined frontal and temporal 
cortex

157

Hypomethylation and overexpression of 
complement genes involved in pruning

Prefrontal cortex and cingulate 
cortex

158

Genetic association to synaptic plasticity 
genes

NA 160

Fragile X syndrome Increased immature spine morphology Cingulate cortex and temporal cortex 172

Increased immature spine morphology Cortex 173

Schizophrenia Reduced grey matter volume Cortex 198

Progressive loss of grey matter volume Cerebral cortex, frontal cortex  
and thalamus

199

Reduced spine density

Normal spine density

Dorsolateral prefrontal cortex

Visual cortex

200

Normal spine density Dorsolateral prefrontal cortex 201

Reduced synaptophysin immunoreactivity Prefrontal cortex 202

Reduced synaptic vesicle proteins Frontal cortex, parietal cortex, 
cingulate cortex, hippocampus  
and thalamus

203

Reduced VGLUT1 boutons Prefrontal cortex 204

Reduced SV2A (PET) Frontal cortex and cingulate cortex 205

Genetic association to synaptic gene loci NA 206,207

Genetic association to MHC gene locus NA 211

Genetic association to C4 allelic variation NA 213

Human cell models

C4 variant microglia–
neuron co-cultures

Increased microglial engulfment NA 216

Mouse models

Tsc2+/− Failure to eliminate spines over 
development

Increased levels of PSD95 and 
synaptophysin

Temporal cortex 155

Atg7flox/flox; Camk2aCre Failure to eliminate spines over 
development

Temporal cortex 155

Atg7flox/flox; Camk2aCre; 
Tsc2+/−

Failure to eliminate spines over 
development

Temporal cortex 155

NseCre; Ptenflox/flox Macrocephaly

Increased spine density

Hippocampus and cortex 183

L7Cre; Tsc1flox/flox Increased spine density Cerebellum 184

Fmr1−/−a Increased spine density

Reduced microglial engulfment of PSD95

Hippocampus 175

Impaired ocular dominance plasticity Visual cortex 176

Failure to eliminate spines over 
development

Somatosensory cortex 179

Impaired synapse elimination Hippocampus 169

Impaired activity-dependent spine 
elimination

Somatosensory cortex 178
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to overpruning or reduced spine formation. The most 
significant genetic associations with schizophrenia are 
within the extended MHC locus, which spans ~8 Mb and 
contains numerous immune-related genes211. Given the 
role of MHC molecules in synaptic pruning, it is intrigu-
ing to speculate that defects in synaptic pruning owing 
to genetic variation in MHC molecules can result in 
schizophrenia78,212. This MHC locus gained even more 
attention recently with work showing that allelic vari-
ants of another gene within this locus, C4A, confers an 
increased risk of schizophrenia213. In humans, C4 exists 
as two isoforms, C4A and C4B, which are encoded by 
separate genes; allelic variants that increase expression 
of C4A but not of C4B are correlated with heightened 
schizophrenia risk213. C4 is particularly interesting as it is 
downstream of C1q in the classical complement cascade, 
which is known to regulate synaptic pruning (Fig. 2b). 
Mouse C4, encoded by C4b, has sequence homology to 
both human isoforms of C4. Supporting a role of C4 in 
pruning, C4b-knockout in mice leads to defective syn-
aptic pruning in the retinogeniculate system. Supporting 
this initial work, in utero electroporation-mediated 
overexpression of mouse C4 leads to increased micro-
glial synapse engulfment and hypoconnectivity in the 

mouse prefrontal cortex, which is accompanied by 
defects in social interactions214. Furthermore, binding 
of human C4A to synapses is more efficient than that of 
C4B, and overexpression of human C4A in mice results 
in increased synapse engulfment by microglia, elevated 
synaptic pruning in the cortex, and social and cogni-
tive behaviours related to schizophrenia215. Moreover, 
C3 deposition and microglial synapse engulfment in 
co-cultures of microglia and neurons were higher for 
cells derived from patients with schizophrenia har-
bouring C4A allelic variants than those harbouring C4B 
allelic variants216. Intriguingly, co-expression network 
analysis of schizophrenia brains showed an inverse cor-
relation between the expression of C4A and synaptic 
genes that do confer schizophrenia risk, a transcriptional 
signature linking C4A expression with increased synap-
tic pruning217. Together, these studies provide evidence 
linking schizophrenia risk genes, particularly C4A, with 
overpruning in schizophrenia.

Environmental influences leading to pruning and behav-
ioural defects in ASD and schizophrenia. In addition to 
genetic factors, there are clear indications that environ-
mental factors play roles in the origin and progression of 

Disorder Evidence for changes in pruning Brain region Refs

Mouse models (cont.)

Lyz2Cre; Atg7flox/flox Increased spine density

Higher levels of PSD95 and SHANK3

Reduced degradation of synaptophysin 
and PSD95 by microglia

Somatosensory cortex 95

Cx3cr1CreER/+; R26eIF4E/eIF4E Increased spine density

Altered microglial gene expression

Impaired microglial phagocytosis

Prelimbic cortex and hippocampus 192

Tg(ACTBeIF4E) Increased spine density Prelimbic cortex 194

Setd1a+/− Reduced spine density Prelimbic cortex 208,209

C4b−/− Impaired eye-specific segregation

Reduction in synaptic C3 labelling

Thalamus 213

Mouse C4b overexpression 
(in utero electroporation)

Increased microglial engulfment of PSD95

Increased spine elimination

Prefrontal cortex 214

Human C4A overexpression 
(transgenic mice)

Reduced synapse density

Increased microglial synapse engulfment

Thalamus and prefrontal cortex 215

Maternal immune 
activationb

Increased synapse density

Reduced Cx3cr1 expression

Hippocampus 224

Increased synapse density

Reduced microglia synaptic engulfment

Hippocampus 225

Altered microglial gene expression

Increased spine density

Increased microglia–spine interactions

Hyper-ramified microglia

Prefrontal cortex 226

Maternal n-3 PUFA 
deficiency

Decreased synapse density

Increased microglial synapse engulfment

Hippocampus 230

MHC, major histocompatibility complex; NA, not applicable; PUFA, polyunsaturated fatty acid; PET, positron emission tomography. 
aSome studies also report normal or decreased spine densities depending on age, brain region and method of analysis (reviewed 
elsewhere174). bSome studies also report normal or decreased spine densities depending on age, brain region and infection 
paradigm (reviewed elsewhere228).

Table 1 (cont.) | Summary of synaptic pruning studies in neurodevelopmental disorders discussed in this Review
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ASD, schizophrenia and related disorders. For example, 
epidemiological evidence suggests that environmental 
factors that affect the immune system, such as maternal 
infections, maternal obstetric complications, mater
nal nutrition and pollution, increase disease risk218–223.  
Thus, a ‘two-hit’ hypothesis has been proposed in which 
risk genes affect susceptibility, but a secondary environ-
mental influence is also required to initiate abnormal 
developmental programmes, including aberrant synaptic 
pruning219.

Mechanistic evidence for environmental influences 
affecting developmental synaptic pruning and sub-
sequent ASD-like or schizophrenia-like behaviours  
largely stems from animal models. For example, an imm
une challenge in pregnant rodents (that is, maternal 
immune activation), which is known to induce ASD-like 
and schizophrenia-like behaviours in offspring223, 
increases neuronal spine density and reduces expres-
sion of the microglial pruning gene Cx3cr1 in the hip-
pocampi of offspring224. Other studies found decreased 
microglial synapse engulfment in a similar model225, and 
synaptic and behavioural deficits induced by maternal 
immune activation were prevented by postnatal depletion 
of microglia226. Early-life inflammation also increased 
microglial engulfment of dendritic spines in response to 
stressors later in life during adolescence, and was also 
prevented by depletion of microglia227. Thus, microglia 
might be the mechanism by which early immune activa-
tion results in synaptic pruning defects and behavioural 
changes (reviewed elsewhere228). Another prenatal envi-
ronmental risk factor for ASD and schizophrenia is the 
diet, including insufficient maternal dietary n-3 polyun-
saturated fatty acids (PUFAs)229. Recently, it was shown 
that offspring from mothers with reduced levels of die-
tary n-3 PUFAs had increased levels of C1q, C3 and CR3 
and elevated microglial synapse engulfment in the hip-
pocampus. This was accompanied by decreased numbers 
of hippocampal synapses, and altered spatial working 
memory in offspring230. n-3 PUFA-deficiency offspring 
have elevated ALOX15–12-hydroxyeicosatetraenoic 
acid signalling in microglia, which was suggested 
to elevate complement receptor expression and 
microglia-mediated phagocytosis230. One possibility 
is that these environmental stressors first affect the 
maternal peripheral immune system, including the gut 
microbiota, which then affects immune signalling and 
synapse development in the fetal brain. This potential 
link has been demonstrated in rodent maternal immune 
activation, in which the autism-like behaviours and cor-
tical circuit abnormalities in offspring manifest them-
selves as a result of maternal gut microbiota-dependent 
development of T helper 17 cells. These T helper 17 cells  
release IL-17A, which enters the fetus and affects neuro
development231–233. Thus, it could be that, for those with 
genetic susceptibility, this environmental influence 
becomes the ‘second hit’ that induces changes in devel-
opmental pruning in early life in the case of ASD or that 
‘primes’ the system for later disruptions in pruning in 
schizophrenia.

In summary, multiple lines of evidence point to 
impaired synaptic pruning as an important mech-
anism in ASD, schizophrenia and related disorders 

(summarized in Table 1). In ASD, most evidence indi-
cates the presence of elevated synaptic connectivity and 
an underpruning phenotype. However, depending on 
the mutation, neuron type and brain region affected, 
overpruning or underpruning could have similar func-
tional outcomes. In schizophrenia, overpruning is 
the prevalent finding across multiple studies. Animal 
models demonstrate that many genetic risk factors 
that underlie syndromic forms of these disorders affect 
pruning. In schizophrenia, there is a clear link with 
complement-mediated pruning. Further linking these 
disorders to immune-mediated pruning are studies 
showing that environmental stressors, which largely 
affect immune signalling, may work cooperatively  
to affect synaptic pruning and the risk of developing 
ASD, schizophrenia and related disorders (Fig. 4).

Conclusions
Synaptic pruning in the CNS is a developmental pro-
gramme that is necessary for establishing appropriate 
brain wiring and function. In many mammalian circuits, 
spontaneous and experience-driven changes in neuronal 
activity drive an activity-dependent Hebbian competi-
tion between synaptic inputs for synaptic territory, 
which is further shaped by local LTD and GABAergic 
innervation at individual synapses. Neuronal and glial 
immune signalling mechanisms and cell death pathways 
are spatially restricted to synapses and are activated 
downstream of changes in neural activity, leading to 
synaptic pruning. However, whether and how activity 
directly regulates these molecules, pathways and cells is 
unknown. One possibility is JAK2–STAT1 signalling, 
which canonically is involved in innate immune and 
cell death transcriptional programmes. During prun-
ing, JAK2–STAT1 signalling is activated specifically 
in less active neurons and localized to less active syn-
apses, which are subsequently eliminated139. It remains 
unknown how this transcriptional programme is elicited 
by changes in activity or is compartmentalized, leading 
to pruning of some synapses but not others. Another 
possibility is that local changes in calcium levels owing 
to, for example, LTD result in perturbations of local 
mitochondria. These early mitochondrial changes can 
then elicit recruitment and/or activation of cell death 
signalling molecules, which stimulate immune signalling 
and glial cells for synapse removal. Furthermore, it is 
also unclear whether pruning occurs in all neurons and 
circuits, and for those circuits that are pruned, why dif-
ferent mechanisms are used for pruning depending on 
the brain region and circuit. The extent of pruning could 
prove challenging to measure given that there could be 
large variations in the circuits that are pruned and the 
timing of pruning across species. Understanding why 
different pruning mechanisms are elicited for differ-
ent types of neurons within a given species should be 
more tractable. The different mechanisms used could 
result from regional molecular and functional hetero-
geneity of neurons and glia throughout the mammalian 
CNS, which is becoming increasingly appreciated from 
single-cell RNA sequencing and spatial transcriptomic 
studies. Finally, the lessons learned regarding the mech-
anistic underpinnings of synaptic pruning are now 
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informing our understanding of disease pathogenesis. 
For example, a number of studies point to immune and 
glia-mediated synaptic pruning as a common disrup-
tion across multiple neurodevelopmental disorders, 
including ASD and schizophrenia. However, in many of 
these studies, as well as in studies of the fundamental 
biology underlying activity-dependent pruning, only 
one time point is typically assessed. It is possible that 
synapse density changes could also result from defects 
in synaptogenesis. Also, while pruning defects could 
be reflective of increases or decreases in elimination of 
the ‘losing’ synapses, these phenotypes could also be a 
consequence of impaired stability or maintenance of the 
‘winning’ synapses.

The field of activity-dependent synaptic pruning 
research has made tremendous progress since the initial 
studies by Hubel and Wiesel. A picture is emerging by 
which activity elicits immune and cell death signalling 
that, ultimately, leads to the clearance of some synapses 
and maintenance and strengthening of others. We are 
now at a point where these critical questions in the field 
can be addressed, which will result in fundamental 
new insights into how CNS circuits develop and how 
defects in pruning can drive changes in connectivity 
and behaviour in a myriad of neurodevelopmental and  
neuropsychiatric disorders.
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